QSAR Models for the Prediction of Binding Affinities to Human Serum Albumin Using the Heuristic Method and a Support Vector Machine

نویسندگان

  • C. X. Xue
  • Ruisheng Zhang
  • Huanxiang Liu
  • Xiaojun Yao
  • Mancang Liu
  • Zhide Hu
  • Bo Tao Fan
چکیده

The binding affinities to human serum albumin for 94 diverse drugs and drug-like compounds were modeled with the descriptors calculated from the molecular structure alone using a quantitative structure-activity relationship (QSAR) technique. The heuristic method (HM) and support vector machine (SVM) were utilized to construct the linear and nonlinear prediction models, leading to a good correlation coefficient (R2) of 0.86 and 0.94 and root-mean-square errors (rms) of 0.212 and 0.134 albumin drug binding affinity units, respectively. Furthermore, the models were evaluated by a 10 compound external test set, yielding R2 of 0.71 and 0.89 and rms error of 0.430 and 0.222. The specific information described by the heuristic linear model could give some insights into the factors that are likely to govern the binding affinity of the compounds and be used as an aid to the drug design process; however, the prediction results of the nonlinear SVM model seem to be better than that of the HM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer

The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...

متن کامل

QSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer

The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...

متن کامل

QSAR Prediction of Half-Life, Nondimentional Eeffective Degradation Rate Constant and Effective Péclet Number of Volatile Organic Compounds

In this work some quantitative structure activity relationship models were developed for prediction of three bioenvironmental parameters of 28 volatile organic compounds, which are used in assessing the behavior of pollutants in soil. These parameters are; half-life, non dimensional effective degradation rate constant and effective Péclet number in two type of soil. The most effective descripto...

متن کامل

Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

     Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...

متن کامل

Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

     Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and computer sciences

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2004